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Attempts to use variational grid-generation methods to generate grids on certain surfaces 
of modest shape failed. There were suflicient points in the grids to well-resolve the surface, so 
the failures were not easily explained. Similar difficulties were found for variational grid 
generation on curves; those problems are caused by multiple solutions of the underlying non- 
linear algebraic equations. 0 1990 Academic PM, Inc. 

1. BACKGROUND 

This paper describes several grid-generation anomalies discovered by the authors 
while using the variational techniques, described in Steinberg and Roache [9], to 
generate grids on surfaces. These surfaces are of modest shape (they are intended 
to model a stern wave behind a ship hull) and the grids being generated resolve the 
surfaces well. The anomalies manifest themselves as convergence problems. Grids 
are difficult or impossible to generate: for some coarse resolutions (to be expected); 
for many fine resolutions (not to be expected). For many intermediate resolutions, 
it is easy to generate excellent grids. Numerical experimentation fails to pinpoint 
the source of the difficulties. The surface grid-generation equations are a com- 
plicated system of two coupled quasi-linear partial differential equations that have 
a form similar to elliptic equations. 

Some numerical experimentation shows that the analogous grid-generation code 
for curves has the same difficulties as the surface grid generator. This paper presents 
an analysis of the curve problem because it is simpler than the surface problem and 
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is clearly relevant to it. There are many ways to generate grids on curves which are 
one-dimensional; there are far fewer methods available for surfaces. Only those 
curve grid-generation schemes that can be extended to surface schemes will be 
considered here. 

These are reasons to believe that the difficulties encountered in curve grid genera- 
tion will show up in other grid-generation problems. When the Euler-Lagrange 
equation for a variational problem are used to generate the grid on a curve, a 
quasi-linear boundary value problem of the form 

x”(t) + g(X(t))(X’(t))2 = 0, x(0)=0, x(l)= 1 (1.1) 

must be solved. Many of the differential equations used to generate one-dimen- 
sional grids have this form, where 

g(x) = (Ufb)))’ =f’MfW (1.2) 

For examples, see [ 1, Eq. (3); 7, Eq. (4)] or Eq. (2.20) below. When comparing our 
equations to those used by others, it is helpful to note that 

-$ g@(t)) = g’bb’. 

The equation for defining a grid equidistributed with respect to a position 
dependent weight w(x) (i.e., solution-adaptive grid) is given by 

x’(r) w(x(t)) = c (1.4) 

(see [lo, p. 371, Eq. (4)]. The derivative of this equation with respect to t gives a 
second-order differential equation for x(t), which is the same as the equation for the 
variational problem defining the adaptive grid (see [9]): 

x”(t) + * (x’(t))2 = 0. 

Since w in (1.5) plays the identical role off in (1.2), it is clearly possible for the 
anomalies that cause diffkulties in curve grid generation to appear in solution- 
adaptive grid-generation problems. 

A simple quadratic curve 

, y=crx(l -x), O<x<l,cr>O, (1.6) 

is used as an example in this paper; all ideas were also tested on the trigonometric 
curve 

y = E sin(zx), O<x<l, &>o; (1.7) 
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but the results are not presented here because they are similar to those for the 
quadratic curve. The quadratic is used to simplify calculations in the example, while 
the trigonometric was chosen to model a wave. 

Three types of grids will be discussed here: continuum grids; one-free-point grids; 
and discrete grids. For each, various solution methods are discussed; including 
fully-lagged iteration, nominal iteration, and direct minimization. In each case, the 
problems of existence and uniqueness of the grids are discussed; more importantly, 
the stability of various solution techniques is analyzed. The stability properties 
should give insight into which iteration method is best for computing grids. 

Because the above-mentioned differential equation can be integrated, the con- 
tinuum problem can be analyzed in detail (see Section 2). The simplest discrete grid 
has one free point and two fixed boundary points (see Section 3). In the case of the 
quadratic curve, all numerical methods’can be analyzed completely for this simple 
problem. When the discrete grid has a modest number of points, numerical codes 
are used to study the grid (see Section 4). Two numerical codes are used (written 
by the authors). One is called “gencur,” which implements the method described in 
[9], and another is called “arc2,” which is a small test code implementing several 
solution techniques. 

The results in this paper make it clear that the anomalies occur because the 
discrete grid-generation problem has many solutions. In the one-free-point problem, 
the grid undergoes a pitchfork bifurcation as the parameters a or E increase. For 
grids with a modest number of points on moderate curves, some numerical methods 
find a multitude of stable solutions. This is illustrated in Fig. 1, where several 
anomalous grids are shown. In this figure, the curves are the parabolas described 
above. All grids contain nine points, including the boundary points. The curves 
illustrate the types of grids that can be obtained from the nominal algorithm that 
is described below. The first curve illustrates a typical random grid that was used 
for initial conditions. The grid on the curve of height one-half is not anomalous and 
is, in fact, an excellent result. If the curve is of height one or higher, then the 
nominal iteration bifurcates and there are multiple solutions to the grid-generation 
equation; this is illustrated by the remaining curves. For finer grids see the discus- 
sion at the end of Section 4.1. With sufficiently high resolution for a given curve, 
some of the methods find a unique solution; however, these grids contain many 
more points than are necessary to resolve the curve. (The continuum grid-genera- 
tion equation has a unique solution.) More detailed conclusions will be given in the 
last section of this paper. 

Other numerical solution methods can be considered: Newton-type iterations; 
conjugate gradient; multigrid; and so forth. These methods typically converge faster 
to one of the solutions, but the solution is dependent on the initial guess for the 
grid and solution algorithm. The discrete equations have multiple solutions, and 
there is no way to guarantee that the computed solution will be the desired one; 
consequently, advanced solution methods are not discussed in this paper. 

The analysis given here provides substantial insight into the difficulties of 
generating grids on curves and surfaces. The authors do not have a solution to the 
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problem of generating such grids. However, one of their students [6] is studying a 
wide range of grid-generation algorithms. Most of the algorithms show anomalous 
behavior, either bifurcations or multiple solutions, but a couple of the algorithms 
show exceptional promise as robust grid generators. 

Many of the algebraic calculations in this paper are done or checked by using. the 
symbol manipulator MACSYMA [S]. Also, the results in Section 2 can be made 
rigorous by formulating them in a Hilbert or Banach space setting. The rigorous 
results provide no additional insight, so they were not pursued. 

We would like to thank Patrick Knupp for helping to clarify the analysis of the 
second derivative of the continuum functional. 

1.1. Curves 

The arc length and its differential frequently appear in these calculations. We 
expected the curvature to play a significant role, but as far as we could see, it does 
not. Let a curve (in vector form) be given by 

R(r) = (x(r), Y(r), z(r)) (1.8) 

and its derivative be given by 

Then the r derivative of the 

2 = IIW-)ll 

and the length of a segment 

R’(r) = (x’(r), y’(r), z’(r)). 

arc length s is given by 

(1.9) 

= J(x’(r))’ + (y’(r))‘+ (z’(r))’ = L(r) (1.10) 

of the curve between r = 0 and r = r is given by 

s=s(r)= ‘L(p)dp. 
s 

(1.11) 
0 

We always assume that 

L(r) > 0. (1.12) 

This implies that the arc length is always a strictly increasing function of r. Let 

S(r) = L2(r) (1.13) 

and 

and note that 

D(r) = (x”(r))2 + (y”(r))2 + (z”(r))’ (1.14) 

S’(r) = 2(x’(r) xR(r) + y’(r) y”(r) + z’(r) zn(r)) (1.15) 
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and 

S”(r) = 2D(r) + 2(x’(r) x”‘(r) + y’(r) y”‘(r) + z’(r) z”‘(r)). (1.16) 

The curvature K is then given by 

K2(r) = S(r) W-J - (S’(r)P)* 
S3(r) . 

(1.17) 

(Note that the curvature depends only on the first and second derivatives of the 
coordinates of the curve.) 

2. CONTINUUM GRIDS 

A continuum grid is merely a reparameterization of a curve. Thus, the problem 
here is essentially to reparameterize a curve using arc length. Such problems have 
been studied by a number of authors (see Steinberg and Roache [9], or Thompson, 
Warsi, and Mastin [lo]). Explicit expressions for the reparameterization are given 
which settle the questions of existence and uniqueness of the parameterization. The 
related variational problem is studied along with several iteration methods for 
finding the solution. 

2.1. Equidistributed Grids on Curves 

Equidistribution of points on a curve requires that the arc lengths between grid 
points should be equal. The developments in Steinberg and Roache [9] discuss 
how to use a variational technique to generate a continuum grid on a curve, so that 
the grid is distributed according to some given weight. The variational problem for 
equidistributing the grid is to minimize 

Z(r) = j: (L(r) r’)’ d5 = Ji S(r)(r’)* d< (2.18) 

over all functions r = r(t) with r(0) = 0 and r( 1) = 1. The Euler-Lagrange equation 
for the minimization problem is 

2S(r) r” + F(r)(r’)* = 0, r(O)=O, r(l)=l. (2.19) 

Recall that S(r) = L*(r), so, in terms of arc length, the previous equation becomes 

r r r  + W) t 2 
LO(r)  =O, r(0) = 0, r( 1) = 1. 

This boundary value problem always possesses a unique solution r = r(t). The 
inverse of the solution 5 = t(r) is a normalized arc length, as the following discus- 
sion shows. 
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First note that r equals a constant is a solution of the differential equation (with 
r’(t) - 0). To find other solutions, assume that r’ is not identically zero. Then, one 
integration of (2.19) gives 

S(r)(r’)‘= K2, (2.21) 

where K > 0 (note that the left-hand side of the integral is greater than or equal to 
zero and not identically zero). Note that, because S(r) > 0 and K > 0, r’(r) # 0. This 
equation cannot, in general, be solved for r as an explicit function of t;. However, 
the equation can be rewritten as 

& 1 -=-= Jscr> L(r) =- 
dr r’ K K’ 

Another integration, and the boundary conditions give 

(2.22) 

(2.23) 

This implies that 5 is a normalized arc length s = K& Note that (2.22) implies that 
dc/dr > 0, so the previous equation can always be inverted for r = r( 5). The inverse 
function is clearly a non-constant solution of (2.19). Thus, the continuum grid is 
given by a normalized arc length; this is exactly what is meant by an equi- 
distributed grid. 

2.2. Direct Minimization 

The functional I(r) given in the previous section has a minimum at a point r” in 
the space of smooth functions r = r(5), if, for each direction a at the point ?, the first 
derivative of the functional is zero and the second derivative is positive.‘Thus, let 
a = a(<) and b = b(t) be smooth and have compact support in the interior of [0, 11. 
The directional derivative (in the direction a at r”) is given by 

while the mixed second derivative is given by 

D,o,Z(i)=iD,l(i+&.b),,=,. 

The functional has a minimum at r” provided that 

D,Z(?) = 0, D:Z(r”) > 0, 

for all a # 0 satisfying the conditions given above. 

(2.25) 

(2.26) 
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The computation of D,Z and D, D,Z is a straightforward application of differen- 
tiation and integration by parts: 

D,Z(r) = jd 2S(r) r’a’ + S’(r)(r’)’ adl, 

= - s ’ (2S(r) r” + S’(r)(r’)‘) a d{, (2.27) 
0 

Db D,Z(r) = j’ 2S(r) a’b’ + 2s’( ) r r’a’b + 2S’(r) r’ab’ + S”(r)(r’)’ ab dcJ. (2.28) 
0 

The second derivative is then given by 

DzZ(r) = j’ 2S(r)(a’)* +49(r) r’aa’ + S”(r)(r’)’ a2 dc. 
0 

(2.29) 

The requirement that D,Z(r”) = 0 for all a implies that 

2&s(?) 7’ + s(?)(7)* = 0, (2.30) 

which is nothing but the Euler-Lagrange equation (2.19) for the minimization of 
Z(r). The discussion of the previous sections shows that the functional has a unique 
critical point, which is given by the arc length parameterization of the curve. 
However, this critical point is not necessarily a minimum. Even though, in general, 
there is no simple formula for the critical point of the minimization problem (i.e., 
the solution of the Euler-Lagrange equation), this critical point is, in fact, always 
a minimum. This is seen as follows. Integration of (2.30) (i.e., Eq. (2.21)) along with 
the chain rule gives 

K2 
WI = fl’ 

-2K’ 
s’(f)= (?,)a ? 

8K2 
SYr’) = (r”1)6’ 

(2.31) 

(2.33) 

where K>O and r’(r) >O. Substituting this into the second derivative of the 
functional gives 

DzZ(Y) = 2K2 j-; (=“;-$a)’ d& (2.34) 

This expression is always greater than or equal to zero and can only equal zero if 
the factor in the numerator is zero. Given ?, an a which makes the numerator iden- 
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tically zero can always be computed. However, the ordinary differential equation, 
which a satisfies, implies that if a(t) is zero at one point, then a = 0. Because a has 
zero boundary conditions, the second derivative of the functional will always be 
positive in every allowable direction, and thus, the normalized arc-length 
parameterization is a minimum. On the other hand, if a is taken to be the solution 
of the ordinary differential equation except near the boundary points, where a is 
made to go smoothly to zero, then the integral in (2.34) can be made arbitrarily 
small and consequently the second derivative cannot be uniformly bounded below. 
This indicates the possibility of serious computational problems. 

2.2.1. EXAMPLE. A family of planar quadratic curves 

y=crx(l-x), O<x<l 

(parameterized by CI) is used as an example through out this paper. The parameter 
6! is used to adjust the height ( = a/4) of the curve. To apply the above results, write 
the curve in parametric form: 

x = r, y=ar(l -r), z = 0, O<r<l. (2.36) 

The Euler-Lagrange equation for this problem can be integrated (as was noted 
above). However, this gives an implicit solution for r as a function of r (in fact, an 
explicit solution for { as a function of r) that is transcendental and not explicitly 
solvable for r as a function of 5 (the solution r(r) can easily be computed using 
MACSYMA). In any case, this solution is a minimum of the functional for any 
value of a. This is in sharp contrast with what is found for approximations of the 
Euler-Lagrange equation. 

2.3. The Fully-Lugged Iteration 

The continuum analog of the iteration technique used in the code “gencur” has 
the worst convergence properties of the techniques studied. However, in multi- 
dimensional problems, the analogs of this technique require minimal storage, there- 
fore such techniques are advantageous when this is a consideration. This iteration 
will be written in the form of an integro-differential equation, so that its con- 
vergence properties are clear. 

The fully-lagged iteration is based on writing the differential equation so that the 
linearized version is as simple as possible (i.e., as much of the differential equation 
as possible is written on the right-hand side of the equation; putting things on the 
right-hand side of the equation is referred to as lagging). The fully-lagged form of 
the boundary value problem is 

r”(r)= - 2S(r(t)) 
S’(riO) (+z))Z, r(O)=O, r(l)= 1, (2.37) 
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where r = $5) is to be found and S(r) is a given function. The numerical iteration 
used in “gencur” corresponds to the continuum iteration 

c+ l(5) = - 2S(r,(r)) s(rn(o) (r, (C))2, n r,+1(0)=0, r,+,(l)= 1, (2.38) 

for n > 0. A typical initial guess is r,,(t) = 5. The Green’s function for the second 
derivative with the given boundary conditions is 

(35, T) = $5 - 1) ff(t - T) + t(T - 1) ff(T - t?, (2.39) 

where H is the usual Heavyside function. If 

F(r)(t) = - j; G(5, 7) a (r’(T))’ dTT (2.40) 

then (2.38) is equivalent to 

r n+l=F(rn), n 20, (2.41) 

with r. given. Note that it is easy to formulate this operator in a Banach space 
setting where F will be compact (and nonlinear). 

Convergence of the iteration depends on the directional derivative of F at r in the 
direction c. which was defined as 

(2.42) 

Here c= c(t), with c(0) =c(l) =O. If 7= F(F) and IlD,F(r”)ll < IjcII, for all c and 
some appropriate norm, then the Picard iteration will converge to 7. 

A short computation gives 

D,F(?)(t) = j; G(<, T) (r’(;;;r;;;;(T” C(T) dr 

- j; G((, T) (“(;(;;;;;“)’ c(z) dz 

r’(T)S(r(T)) 
S(r(T)) C(T) dT. 

The critical quantities in D,F are 

c =S’(r) S(r) 2 
’ S(r)’ 

c = S ” ( r )  -- - 
2 2S(r) (  > W-1 . 

(2.43) 
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The norm of D,F depends on S’ and S”, both of which involve the first, second, 
and third derivatives of the coordinates of the curve. Recall, that the curvature 
depends only on the first and second derivatives of the coordinates, so convergence 
of the iteration depends on more than the curvature. 

2.3.1. EXAMPLE. For the quadratic example, the expression for the second criti- 
cal quantity is complicated; neither the expression for the first or second critical 
quantity is illuminating. However, the limits of these expression for u large show 
that there are problems. For the quadratic example, 

lim Cl=&, 
12 

a-+cc lim C2= -t2r-1)2. oL+cc 
(2.44) 

Note, that all limits are infinite for r = 4, so convergence troubles are expected for 
large ci. 

2.4. The Nominal Iteration 

The nominal iteration keeps as much information as possible in the linearized 
equation. The boundary value problem is written 

S’(r) 
rN + 2&s(r) 

- (r’)2 = 0, r(O)=O, r(l)= 1; 

and the iteration scheme is 

r:+l+(&f$r:)rL+,=O, rn+l(0)=O, r,+,(l)=l. (2.46) 

Set 

W) 
g(r) = 2~(r) I’, (2.47) 

so that the iteration becomes 

Note that 

I, r,+l+g(r,)r,‘+l=O~ rn+l(0)=O, rn+l(l)= 1. (2.48) 

g(r(O) = k $ (ln s(r(t))). 

The equation for this iteration can be integrated: rewrite the iteration as 

rrr 
+ + g(r,) = 0; 
rn+l 

(2.50) 
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integrate with respect to r to obtain 

ln(rl+ i) + $ln(S(r,)) = C. 

This implies that rk+ ,L(r,) = C, or 

where 

1 l 1 -= 
C s 

~ dz. 
0 W,(z)) 

Thus the iteration can be written as 

The directional derivative of this functional is (using S = L2) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

The critical quantity to estimate, to show convergence of this iteration, is 
C,. = S’(r)/S3’2(r). The square of this quantity is one of the terms in the curvature, 
but otherwise it is not closely related to it. 

2.4.1. EXAMPLE. For the quadratic example, C, is complicated; however, C, is 
small for IX small or large. The numerical algorithm that implements the nominal 
iteration does converge well for large values of the parameters; however, there is an 
additional problem, which is explained in a later section. 

2.5. A Special Curve 

In many numerical experiments, S’(r)/S(r) is nearly constant. If 

(2.56) 

where C is constant, then the boundary value problem for determining the grid 
becomes 

r”(5) + C(r’(t))2 = 0, r(O)=O, r(l)= 1. (2.57) 
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This problem is easy to analyze. If it is assumed that a curve is given as y = f(x), 
0 <x < 1, then (choosing x = r) S(x) = 1 + (f’)2, S’(x) = 2f’f”, and then S/S = 2C 
becomes 

frf-" =c 
1 +(f')' . 

This can be integrated to 

f'= *JzFz. 

Next, suppose that f satisfies 

Cf =f’-arctan(f’)+AC, 

where A is some constant; then 

ftf" 
C=l+(f’)2. 

Consequently, if 

then 

u(x)= &/GFT, 

f(x) = 
u(x) - arctan(u(x)) + A 

C 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

This is a general solution for the constant S/S problem. 
Curves from this family are chosen for a variety of numerical experiments; the 

results clearly indicate that the numerical difficulties are not dependent on the size 
of C alone. 

3. ONE-POINT GRIDS 

In this section, grids that contain one free point and two fixed boundary points 
are analyzed and used to illustrate various ideas discussed in the section on con- 
tinuum grids. The last subsection of this section is devoted to a discussion of the 
minimization of a discretized form of the variational integral. One-point grids make 
a good starting point for the numerical experiments that are reported on in the next 
section. In fact, the one-point grid is a far better model than the continuum, when 
computing with highly resolved grids. 
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3.1. Multiple Solutions 

The grid is calculated by solving a discretized version of the Euler-Lagrange 
equation, 

2S(r) r” + S’(r)(r’)’ = 0, r(0) = 0, r( 1) = 1, (3.64) 

for r = r(t), 0 < 5 < 1. This equation is discretized using centered differences. The 
one-free-point grid is given by 5 = 0, 5 = 4, and 5 = 1; corresponding r = r(r) values 
are r = 0, r = r(i), and r = 1. Consequently, 

1-o 
r’g-= 1, 

,,-l-2r+O 
1 

r = (1,2)2 =4(1-2r). 

The discretized Euler-Lagrange equation for the one free point is then 

8(1 -2r)S(r)+S’(r)=O. 

This equation can be integrated: 

8(,2-r-A) S(r)=e , S(0) = eKEa. 

(3.66) 

(3.67) 

Now A can be determined from the parameterization of the curve and then (3.67) 
is a transcendental algebraic equation for r. As this equation is nonlinear, it should 
typically have multiple solutions; this poses problems for a grid generator. 

3.1.1. EXAMPLE. This is a continuation of the quadratic example. The problem 
is to choose a point, r, that divides this curve into two pieces of equal length 
(clearly, the solution should be r = f). From (1.13) and (1.15), 

and 

S(r) = 1 + cr2( 1 - 2r)2, S’(r) = -4a*( 1 - 2r), (3.68) 

s(r) 4( 1 - 2r) -= - 
S(r) 1/a2+(1-2r)2’ 

The discretized Euler-Lagrange equation is 

4(1-2r) 
8(1- 2r) = I/@2 + (I_ Zr)2’ 

As desired, r = 4 is a solution of this equation. 
If r # $, then the equation becomes 

(3.69) 

(3.70) 

(3.71) 
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If a2 c 2, this equation has no real solutions; if a = 2, then r = i is a double root; 
if a2 > 2, then 

r (3.72) 

are two real roots of the equation. For o! large, these roots are approximately 

r la + =p4. (3.73) 

The example shows that the intuitive argument (given in Steinberg and Roache 
[9]) about dividing curves into pieces of equal arc length does not apply to all 
solutions of the discretized Euler-Lagrange equation. 

3.2. Iteration 

Both the fully-lagged iteration and the nominal iteration for a one-point grid are 
the same, because the expression for r’ (using centered differences) does not involve 
the unknown point. The fully-lagged iteration is based on solving the differential 
equation for the second derivative: 

r” = -g (r’)2, r(O)=O, r(l)=l. (3.74) 

For one free point, the discretized equation is 

4( 1 - 2r) = - S’(r)/2S(r). (3.75) 

The iteration is given by 

4(1- 2rk+ ,) = - S’(r,)/2S(r,) (3.76) 

or 

lk + 1 = &kh g(r)=i( 1 +$$l). (3.77) 

If r” is a fixed point, ?= g(r”), then the iteration will converge if Ig’(r”)l < 1. Now 

(3.78) 

3.2.1. EXAMPLE. For the previous quadratic example, 

g’( l/2) = a2/2. (3.79) 

581/91/Z-2 
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Consequently, the iteration will converge linearly to the solution r = i for x2 < 2, 
and diverge linearly for a* > 2. Also, 

n’(r*l=$- 1, (3.80) 

so if a2 > 2 then 1 g’(r, )I < 1. Thus, when a2 > 2, the root r = f is unstable, while the 
roots r=r* are stable for the iteration. Note that convergence is quadratic when 
a = 2, and convergence is slow when a is large. 

This example shows that the grid generation equation can have multiple solu- 
tions and that the desired solution can be unstable for a reasonable solution 
method. These results are verified numerically in Section 4. 

3.3. Direct Variational Method 

This section compares the previous results to a direct variational method of the 
type introduced in Castillo [2-53. Consider a curve defined as in 1.8, and then let 
rir 1 <i<n, be a subdivision of [0, 11, that is, ri<ri+l, 1 <i<n- 1, rl =O, r,,= 1. 
If 

ARi = R(r,) - R(ri_ ,) (3.81) 

and 

di = /I ARJ = ,/Ax; + Ay: + AZ;, (3.82) 

then a natural analog of the functionals given in Castillo [2-51 would be 

F= i df. 
i=2 

(3.83) 

Note that the analog of the implied constraints [9] 

C= f: di=const 
i=2 

(3.84) 

is not satisfied. However, C is bounded below by the square of the distance between 
the endpoints of the curve. 

Consider the simple case where 

x = r, y =f(rh z = 0, f (0) = 0, f(l)=& (3.85) 

that is. 

Y = f(x), O<x<l. (3.86) 
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If [0, l] is divided into two intervals, then rl = 0, rZ = r, r3 = 1, and the functional 
is 

F(r) = rz + (1 - r)2 + 2f2(r). (3.87) 

To minimize F, set F’ = 0 and then solve for r. 

3.3.1. EXAMPLE. As before, consider the special case where the curve is 
quadratic, f(x) = a~( 1 - x). Then 

F’(r) = 4a2(r - i)(r’ - r + 1/2g2). (3.88) 

Consequently, r = f is always a solution. The quadratic has roots 

(3.89) 

Note, that r+ are symmetric with respect to r = f. These roots are real for a2 > 2 
and distinct for a2 > 2. Also, F”(r, ) > 0, for a2 > 2, while F”(i) = (2 - a2) changes 
sign at a2 = 2. Thus, for a* < 2 there is one minimum at r = f; for a2 > 2 there are 
two minima at r = rf and a unique maximum at r = 4. These results are similar to 
the results for the Euler-Lagrange method. 

3.3.2. EXAMPLE. Recall, that if the curve is a semicircle given by 

f(x)=&qFy, (3.90) 

then 

d;+d:= 1; (3.91) 

that is, F(r) is a constant. This is a seriously degenerate problem. 

These examples indicate that the direct minimization of a discretized integral has 
difficulties similar to (perhaps worse than) the Euler-Lagrange methods. 

4. NUMERICAL EXPERIMENTS 

In this section, some results from numerical experiments done with the codes 
“gencur” and “arc2” are given. These codes implement Picard iteration schemes for 
solving the nonlinear equations; the linear equations are solved using a standard 
tridiagonal solver. The nonlinear solvers were run without any relaxation; the itera- 
tion was stopped when the maximum of the absolute differences of two successive 
iterates was less than 10p5. This tolerance is a bit difficult to satisfy, i.e., a fairly 
large number of iterations are required. On the other hand, a fairly tight tolerance 
is needed to distinguish multiple solutions near the bifurcation point. 
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The nominal iteration behaves better than the fully-lagged iteration; the results 
for the fully-lagged iteration are important because this is the type of iteration used 
in many higher-dimensional problems. 

4.1. The Fully-Lagged Iteration 

The code “gencur” implements the fully-lagged Picard iteration. This code will be 
compared to “arc2” (which uses the nominal iteration) later in this section. The 
example discussed in the previous sections is used to illustrate the codes. 

4.1.1. Quadratic Curves. Table I contains some runs for the curve 

y=ctx(l -x), O<x<l, (4.92) 

for various values of CY. This table illustrates the dependence of the grid on ct. 
These results confirm the results in the section on one-point grids, including the 
bifurcation of the root at a = ,/?. Recall, that the grid has two boundary points and 
one free point. The initial grid contains the points r = 0.0, 0.01, 1.0. The initial grid 
is skewed, so that non-symmetric solutions will be found. In Table I, nliter is the 
number of nonlinear iterations, r is the root computed by “gencur” and ? is the true 
root. 

Tables II, III, and IV indicate what happens as the number of points in the grid 
increases. Each table is labelled with a value of a; the values are near fi. The 
column labelled with points contains the number of points in the grid. The quantity 
deu measures the smoothness of the grid; which is the standard deviation of the grid 
lengths divided by the average of the grid lengths. Again, r(2)=0.01, so that the 
initial grid is skewed. 

In Table II, c1> ,/?; in Table III, a = @; and in Table IV, c1< a. One could 
conclude from these experiments that all problems disappear as the grid is resolved; 
this is not true, as shown in the following examples. 

As a is increased, grids become increasingly difficult to generate. At some point, 
the fully-lagged algorithm fails to converge in 200 iterations. This point is called the 
bifurcation point because of the behavior of the one-point grid. However, it may be 
better to call this the “divergence” point. The results for the nominal iteration 
(given in Table V) will clarify this point. Numerical experimentation indicates that 
grids containing about 20 to 30 points are easy to generate, so some results for 
grids with 21, 41, and 81 points are presented. The results in Table IV indicate that 
for a r fi, grids of most sizes are easy to generate. The results in Table V indicate 
that the grid containing 21 points bifurcates for a slightly larger than 4. The grid 
containing 41 points bifurcates for 3.37 <a < 3.38 while the grid containing 81 
points bifurcates for 3.09 <a < 3.10 (the data for 41 and 81 points looks just like 
the data for 21 points, and so, it is not presented). The decrease of the bifurcation 
value with increasing grid size is a very serious problem for the grid generator. 
Note, that the midpoint of the grid should be r = i because the number of grid 
points is odd and the curve is symmetric about r = $. The initial grid is evenly 
distributed in r. 
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TABLE I 

One-Point Grids 

a Nliter r ?a 

1.3 46 0.49995 

2.0 5 0.25000 
2.5 11 0.20845 
3.0 19 0.18820 
5.0 59 0.16089 

0.5 
0.5 
0.5 
0.38215 
0.25ooO 
0.20845 
0.18820 
0.16088 

TABLE II 

a=1.5 

Points Nliter Dev 

3 28 0.2 
5 8 0.01 
9 9 0.005 

17 9 0.001 
33 7 0.0003 

TABLE III 

a = 1.41421356 

Points Nliter DeV 

3 >200 0.02 
5 5 0.01 
9 9 0.004 

17 9 0.001 
33 7 0.0003 

TABLE IV 

a= 1.3 

Points Nliter DW 

3 46 o.cmO7 
5 6 0.01 
9 8 0.004 

17 8 0.0009 
33 7 0.0002 
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TABLE V 

Divergence Point 

c? Nliter Center 

4.1 13 0.50000 
4.200 14 0.49994 
4.201 >200 
4.3 >200 - 
5.3 >200 
5.4 86 0.84667 
5.5 42 0.15063 

The bifurcation at CI = 4.200 is very abrupt. For CI 2 5.4 the interior points for the 
computed grids all lie on one side of I = f, and thus, are highly skewed. 

These numerical experiments indicate that the fully-lagged iteration has serious 
difficulties, in particular, the decrease of the bifurcation point with increasing grid 
size prevents the use of grid refinement to eliminate the convergence difficulties. The 
results for the nominal iteration (presented below) clarify the situation. 

4.2. The Nominal Iteration 

The code “arc2” implements the nominal iteration. For a one-free-point grid, the 
fully-lagged and nominal iterations are the same; the codes are different, so there 
are some minor differences in the runs, but nothing of any significance. The results 
in the previous subsection for a = 1.4, fi, and 1.3 are essentially the same for both 
codes. This is expected, because the values of c1 are not near a bifurcation point. 
However, near and above the bifurcation points, the codes behave quite differently. 
Here, the use of the term “bifurcation” is appropriate because, the midpoint of the 
grid “falls off” the top of the curve, just as it does in the one-free-point case. 

4.2.1. Quadratic Curves. As the theory in the section on continuum equations 
indicates, the bifurcation points for the fully-lagged and nominal iterations are dif- 
ferent. For the nominal iteration, the bifurcation is not so abrupt and the bifurca- 
tion point is somewhat larger than it is for the fully-lagged iteration. The bifurca- 
tion points for the nominal iteration are as follows: for 21 points, 4.1 < a c 4.2; for 
41 points, 5.7 < a < 5.8; and for 81 points, 7.6 < cx < 7.7. These data indicate that the 
bifurcation point satisfies 

a x 0.8 J;;. (4.93) 

The fact that the bifurcation point grows with the grid resolution is a good feature 
of the nominal iteration; the nominal iteration limiting behavior for high resolution 
approaches that of the continuum model. Tables VI and VII illustrate the sensitivity 
of the grid to the initial conditions as well as the bifurcation of 21 point grids (all 
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Table VI 

Bifurcation Point 

a Nliter Center 

4.1 8 0.50000 
4.2 8 0.49994 
4.3 8 O.XilOO 
5.3 8 0.50000 
5.4 32 0.42247 
5.5 8 0.49999 

parameters are the same as stated in the previous section). Note that the nominal 
iteration converges for values of the parameter above and below the bifurcation 
point. 

The behavior presented in Table VI is odd; in particular, the center point returns 
to a value of 0.5 for large a. In Table VII, the initial grid is skewed to the left; the 
center point has the value 0.1 (otherwise all parameters are the same as stated 
above). Now, the bifurcation point can be seen clearly. 

4.3. Comments 

4.3.1. Multiple Solutions. When large numbers of numerical experiments are run 
on the nominal iteration for parameter values above the bifurcation point, a large 
number of solutions are found, dependent on the initial conditions. No pattern of 
interest is found in the solutions, therefore, these results are not presented. 

4.3.2. Improved Convergence. Under-relaxing the nonlinear iteration improves 
convergence. Some numerical experimentation was used to find optimal relaxation 
factors. As expected, the factor depends on the shape of the curve and the number 
of grid points; the optimal factors are between 1 and &. Because nothing novel 
comes out of this work (and the additional parameter makes the results more com- 
plicated) it is not presented here. It is also possible to use multigrid algorithms to 

Table VII 

Skewed Initial Grid 

a 

4.1 
4.15 
4.2 
4.3 
4.5 
5.3 
5.5 

Nliter Center 

97 0.50021 
216 0.50094 
71 0.51507 
27 0.52881 
14 0.54408 
18 0.57491 
58 0.57999 
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compute these grids; however, the bad behavior of the coarse grids presents special 
difficulties for these methods. 

43.3. Alternate Dlfferencing Schemes. Significant effort was expended on 
experimentation with alternate differencing formulas: centered, one-sided 
(“upwind”), and ZIP differencing. The results were uniformly negative. The alter- 
nates do not affect the qualitative fundamental difficulty of multiple solutions. 
Furthermore, the first-order accurate method introduces so much error (“artificial 
diffusion,” in CFD terms) that when solutions are obtained for the easy (low 
amplitude) problems, the results are entirely unsatisfactory, i.e., the discrete 
solutions patently do not equidistribute the arc lengths, except for excessively 
fine resolutions. 

5. CONCLUSIONS 

The fact that the discrete grid-generation equations have multiple solutions is the 
most important conclusion. Once this is established, changing the method of 
solving the discrete equations does not help. If the method converges, then the 
solution found depends on the initial data. What is needed is a new formulation for 
the grid-generation problem that eliminates the multiple solutions. 

The analysis of the continuum grid-generation problem shows that the 
Euler-Lagrange equation has a unique solution and this solution is a critical point 
of the length functional. Moreover, all second directional derivatives are positive 
at the critical point so it is a minimum. In sharp contrast to this, all discrete 
algorithms studied have a bifurcation after which the solution of the variational 
problem ceases to be unique. 

The one-point grid undergoes a pitchfork bifurcation when the parameter in each 
of the example curves is increased. It is also possible to show that the minimization 
of an analogous discretized integral has an even worse bifurcation. The explicit 
results given in this problem also provide a check for the numerical codes. Note 
that these results do not distinguish between the fully-lagged and nominal 
iterations. 

The numerical experiments show the true difficulty; the discrete equations have 
multiple solutions for curves of modest shape. The fully-lagged iteration behaves 
poorly as the resolution of the grid increases. The nominal iteration behaves better, 
converging for parameter values well above the bifurcation point. The fully-lagged 
iteration diverges so quickly as the curve-parameter values increase, that it provides 
little information about the grid-generation difficulty. The nominal iteration 
converges so well that it clearly delineates the bifurcation of the grid from a unique 
solution to multiple solutions. 

The analysis done in this paper provides substantial insight into the difficulties 
(and possible remedies) inherent in the curve and surface grid-generation problem. 
There is good reason to anticipate analogous problems for solution-adaptive 
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algorithms. Work is now proceeding on developing better algorithms [6]. One 
possibility is to not equidistribute the grid, but to distribute it so that its spacing 
is proportional to some function of the curvature. 
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